Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712454

RESUMO

Metal-organic frameworks (MOFs) have shown promise for adsorptive separations of metal ions. Herein, MOFs based on highly stable Zr(IV) building units were systematically functionalized with targeted metal binding groups. Through competitive adsorption studies, it was shown that the selectivity for different metal ions was directly tunable through functional group chemistry.

2.
RSC Adv ; 13(33): 23147-23157, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37533784

RESUMO

Organic acids are prevalent in the environment and their acidity and the corresponding dissociation constants can change under varying environmental conditions. The impact of nanoconfinement (when acids are confined within nanometer-scale domains) on physicochemical properties of chemical species is poorly understood and is an emerging field of study. By combining infrared and Raman spectroscopies with molecular dynamics (MD) simulations, we quantified the effect of nanoconfinement in silica nanopores on one of the fundamental chemical reactions-the dissociation of organic acids. The pKa of formic and acetic acids confined within cylindrical silica nanopores with 4 nm diameters were measured. MD models were constructed to calculate the shifts in the pKa values of acetic acid nanoconfined within 1, 2, 3, and 4 nm silica slit pores. Both experiments and MD models indicate a decrease in the apparent acid dissociation constants (i.e., increase in the pKa values) when organic acids are nanoconfined. Therefore, nanoconfinement stabilizes the protonated species. We attribute this observation to (1) a decrease in the average dielectric response of nanoconfined aqueous solutions where charge screening may be decreased; or (2) an increase in proton concentration inside nanopores, which would shift the equilibrium towards the protonated form. Overall, the results of this study provide the first quantification of the pKa values for nanoconfined formic and acetic acids and pave the way for a unifying theory predicting the impact of nanoconfinement on acid-base chemistry.

3.
Commun Chem ; 6(1): 172, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37607981

RESUMO

Adsorption reactions at solid-water interfaces define elemental fate and transport and enable contaminant clean-up, water purification, and chemical separations. For nanoparticles and nanopores, nanoconfinement may lead to unexpected and hard-to-predict products and energetics of adsorption, compared to analogous unconfined surfaces. Here we use X-ray absorption fine structure spectroscopy and operando flow microcalorimetry to determine nanoconfinement effects on the energetics and local coordination environment of trivalent lanthanides adsorbed on Al2O3 surfaces. We show that the nanoconfinement effects on adsorption become more pronounced as the hydration free energy, ΔGhydr, of a lanthanide decreases. Neodymium (Nd3+) has the least exothermic ΔGhydr (-3336 kJ·mol-1) and forms mostly outer-sphere complexes on unconfined Al2O3 surfaces but shifts to inner-sphere complexes within the 4 nm Al2O3 pores. Lutetium (Lu3+) has the most exothermic ΔGhydr (-3589 kJ·mol-1) and forms inner-sphere adsorption complexes regardless of whether Al2O3 surfaces are nanoconfined. Importantly, the energetics of adsorption is exothermic in nanopores only, and becomes endothermic with increasing surface coverage. Changes to the energetics and products of adsorption in nanopores are ion-specific, even within chemically similar trivalent lanthanide series, and can be predicted by considering the hydration energies of adsorbing ions.

4.
Artigo em Inglês | MEDLINE | ID: mdl-37478869

RESUMO

Elucidating the mechanisms responsible for sub-microsecond desorption of water and other impurities from electrode surfaces at high heating rates is crucial for understanding pulsed-power behavior and optimizing its efficiency. Ionization of desorbed impurities in the vacuum regions may create parallel loads and current loss. Devising methods to limit desorption during the short time duration of pulsed-power will signficantly improve the power output. This problem also presents an exciting challenge to and paradigm for molecular length-scale modeling and theories. Previous molecular modeling studies have strongly suggested that, under high vacuum conditions, the amount of water impurity adsorbed on oxide surfaces on metal electrodes is at a sub-monolayer level, which appears insufficient to explain the observed pulsed-power losses at high current densities. Based on Density Functional Theory (DFT) calculations, we propose that hydrogen trapped inside iron metal can diffuse into iron (III) oxide on the metal surface in sub-microsecond time scales, explaining the extra desorbed inventory. These hydrogen atoms react with the oxide to form Fe(II) and desorbed H2O at elevated temperatures. Cr2O3 is found to react more slowly to form Cr(II). H2 evolution is also predicted to require higher activation energies, so H2 may be evolved at later times than H2O. A one-dimensional diffusion model, based on DFT results, is devised to estimate the water outgassing rate under different conditions. This model explains outgassing above 1 ML for surface temperatures of 1 eV often assumed in pulsed-power systems. Finally, we apply a suite of characterization techniques to demonstrate that when iron metal is heated to 650 Celsius, the dominant surface oxide component becomes alpha-Fe2O3. We propose such specially-prepared samples will lead to convergence between atomic modeling and measurements like temperature-programmed desorption. .

5.
Chem Rev ; 123(10): 6413-6544, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37186959

RESUMO

Interfacial reactions drive all elemental cycling on Earth and play pivotal roles in human activities such as agriculture, water purification, energy production and storage, environmental contaminant remediation, and nuclear waste repository management. The onset of the 21st century marked the beginning of a more detailed understanding of mineral aqueous interfaces enabled by advances in techniques that use tunable high-flux focused ultrafast laser and X-ray sources to provide near-atomic measurement resolution, as well as by nanofabrication approaches that enable transmission electron microscopy in a liquid cell. This leap into atomic- and nanometer-scale measurements has uncovered scale-dependent phenomena whose reaction thermodynamics, kinetics, and pathways deviate from previous observations made on larger systems. A second key advance is new experimental evidence for what scientists hypothesized but could not test previously, namely, interfacial chemical reactions are frequently driven by "anomalies" or "non-idealities" such as defects, nanoconfinement, and other nontypical chemical structures. Third, progress in computational chemistry has yielded new insights that allow a move beyond simple schematics, leading to a molecular model of these complex interfaces. In combination with surface-sensitive measurements, we have gained knowledge of the interfacial structure and dynamics, including the underlying solid surface and the immediately adjacent water and aqueous ions, enabling a better definition of what constitutes the oxide- and silicate-water interfaces. This critical review discusses how science progresses from understanding ideal solid-water interfaces to more realistic systems, focusing on accomplishments in the last 20 years and identifying challenges and future opportunities for the community to address. We anticipate that the next 20 years will focus on understanding and predicting dynamic transient and reactive structures over greater spatial and temporal ranges as well as systems of greater structural and chemical complexity. Closer collaborations of theoretical and experimental experts across disciplines will continue to be critical to achieving this great aspiration.

6.
Annu Rev Phys Chem ; 74: 169-191, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36737676

RESUMO

Reactions at solid-water interfaces play a foundational role in water treatment systems, catalysis, and chemical separations, and in predicting chemical fate and transport in the environment. Over the last century, experimental measurements and computational models have made tremendous progress in capturing reactions at solid surfaces. The interfacial reactivity of a solid surface, however, can change dramatically and unexpectedly when it is confined to the nanoscale. Nanoconfinement can arise in different geometries such as pores/cages (3D confinement), channels (2D confinement), and slits (1D confinement). Therefore, measurements on unconfined surfaces, and molecular models parameterized based on these measurements, fail to capture chemical behaviors under nanoconfinement. This review evaluates recent experimental and theoretical advances, with a focus on adsorption at solid-water interfaces. We review how nanoconfinement alters the physico-chemical properties of water, and how the structure and dynamics of nanoconfined water dictate energetics, pathways, and products of adsorption in nanopores. Finally, the implications of these findings and future research directions are discussed.

7.
J Chem Phys ; 154(10): 104503, 2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33722003

RESUMO

Water in nano-scale confining environments is a key element in many biological, material, and geological systems. The structure and dynamics of the liquid can be dramatically modified under these conditions. Probing these changes can be challenging, but vibrational spectroscopy has emerged as a powerful tool for investigating their behavior. A critical, evolving component of this approach is a detailed understanding of the connection between spectroscopic features and molecular-level details. In this paper, this issue is addressed by using molecular dynamics simulations to simulate the linear infrared (IR) and Raman spectra for isotopically dilute HOD in D2O confined in hydroxylated amorphous silica slit pores. The effect of slit-pore width and hydroxyl density on the silica surface on the vibrational spectra is also investigated. The primary effect of confinement is a blueshift in the frequency of OH groups donating a hydrogen bond to the silica surface. This appears as a slight shift in the total (measurable) spectra but is clearly seen in the distance-based IR and Raman spectra. Analysis indicates that these changes upon confinement are associated with the weaker hydrogen-bond accepting properties of silica oxygens compared to water molecules.

8.
Phys Chem Chem Phys ; 23(10): 5750-5759, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33662085

RESUMO

Lanthanide elements have well-documented similarities in their chemical behavior, which make the valuable trivalent lanthanide cations (Ln3+) particularly difficult to separate from each other in water. In this work, we apply ab initio molecular dynamics simulations to compare the free energies (ΔGads) associated with the adsorption of lanthanide cations to silica surfaces at a pH condition where SiO- groups are present. The predicted ΔGads for lutetium (Lu3+) and europium (Eu3+) are similar within statistical uncertainties; this is in qualitative agreement with our batch adsorption measurements on silica. This finding is remarkable because the two cations exhibit hydration free energies (ΔGhyd) that differ by >2 eV, different hydration numbers, and different hydrolysis behavior far from silica surfaces. We observe that the similarity in Lu3+ and Eu3+ ΔGads is the result of a delicate cancellation between the difference in Eu3+ and Lu3+ hydration (ΔGhyd), and their difference in binding energies to silica. We propose that disrupting this cancellation at the two end points, either for adsorbed or completely desorbed lanthanides (e.g., via nanoconfinment or mixed solvents), will lead to effective Ln3+ separation.

9.
Chem Geol ; 522: 26-37, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31371834

RESUMO

The reactivity of co-occurring arsenic (As) and uranium (U) in mine wastes was investigated using batch reactors, microscopy, spectroscopy, and aqueous chemistry. Analyses of field samples collected in proximity to mine wastes in northeastern Arizona confirm the presence of As and U in soils and surrounding waters, as reported in a previous study from our research group. In this study, we measured As (< 0.500 to 7.77 µg/L) and U (0.950 to 165 µg/L) in waters, as well as mine wastes (< 20.0 to 40.0 mg/kg As and < 60.0 to 110 mg/kg U) and background solids (< 20.0 mg/kg As and < 60.0 mg/kg U). Analysis with X-ray fluorescence (XRF) and electron microprobe show the co-occurrence of As and U with iron (Fe) and vanadium (V). These field conditions served as a foundation for additional laboratory experiments to assess the reactivity of metals in these mine wastes. Results from laboratory experiments indicate that labile and exchangeable As(V) was released to solution when solids were sequentially reacted with water and magnesium chloride (MgCl2), while limited U was released to solution with the same reactants. The predominance of As(V) in mine waste solids was confirmed by X-ray absorption near edge (XANES) analysis. Both As and U were released to solution after reaction of solids in batch experiments with HCO3 -. Both X-ray photoelectron spectroscopy (XPS) and XANES analysis determined the predominance of Fe(III) in the solids. Mössbauer spectroscopy detected the presence of nano-crystalline goethite, Fe(II) and Fe(III) in (phyllo)silicates, and an unidentified mineral with parameters consistent with arsenopyrite or jarosite in the mine waste solids. Our results suggest that As and U can be released under environmentally relevant conditions in mine waste, which is applicable to risk and exposure assessment.

10.
Sci Rep ; 9(1): 8246, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31160663

RESUMO

Water is the universal solvent and plays a critical role in all known geological and biological processes. Confining water in nano-scale domains, as encountered in sedimentary rocks, in biological, and in engineered systems, leads to the deviations in water's physicochemical properties relative to those measured for the non-confined phase. In our comprehensive analysis, we demonstrate that nano-scale confinement leads to the decrease in the melting/freezing point temperature, density, and surface tension of confined water. With increasing degree of spatial confinement the population of networked water, as evidenced by alterations in the O-H stretching modes, increases. These analyses were performed on two groups of mesoporous silica materials, which allows to separate pore size effects from surface chemistry effects. The observed systematic effects of nano-scale confinement on the physical properties of water are driven by alterations to water's hydrogen-bonding network-influenced by water interactions with the silica surface - and has implications for how we understand the chemical and physical properties of liquids confined in porous materials.

11.
J Phys Chem Lett ; 9(18): 5379-5385, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30169044

RESUMO

The adsorption equilibrium constants of monovalent and divalent cations to material surfaces in aqueous media are central to many technological, natural, and geochemical processes. Cation adsorption-desorption is often proposed to occur in concert with proton transfer on hydroxyl-covered mineral surfaces, but to date this cooperative effect has been inferred indirectly. This work applies density functional theory-based molecular dynamics simulations of explicit liquid water/mineral interfaces to calculate metal ion desorption free energies. Monodentate adsorption of Na+, Mg2+, and Cu2+ on partially deprotonated silica surfaces are considered. Na+ is predicted to be unbound, while Cu2+ exhibits binding free energies to surface SiO- groups that are larger than those of Mg2+. The predicted trends agree with competitive adsorption measurements on fumed silica surfaces. As desorption proceeds, Cu2+ dissociates one of the H2O molecules in its first solvation shell, turning into Cu2+(OH-)(H2O)3, while Mg remains Mg2+(H2O)6. The protonation state of the SiO- group at the initial binding site does not vary monotonically with cation desorption.

12.
Geochem Trans ; 19(1): 13, 2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29946861

RESUMO

Nano-scale spatial confinement can alter chemistry at mineral-water interfaces. These nano-scale confinement effects can lead to anomalous fate and transport behavior of aqueous metal species. When a fluid resides in a nanoporous environments (pore size under 100 nm), the observed density, surface tension, and dielectric constant diverge from those measured in the bulk. To evaluate the impact of nano-scale confinement on the adsorption of copper (Cu2+), we performed batch adsorption studies using mesoporous silica. Mesoporous silica with the narrow distribution of pore diameters (SBA-15; 8, 6, and 4 nm pore diameters) was chosen since the silanol functional groups are typical to surface environments. Batch adsorption isotherms were fit with adsorption models (Langmuir, Freundlich, and Dubinin-Radushkevich) and adsorption kinetic data were fit to a pseudo-first-order reaction model. We found that with decreasing pore size, the maximum surface area-normalized uptake of Cu2+ increased. The pseudo-first-order kinetic model demonstrates that the adsorption is faster as the pore size decreases from 8 to 4 nm. We attribute these effects to the deviations in fundamental water properties as pore diameter decreases. In particular, these effects are most notable in SBA-15 with a 4-nm pore where the changes in water properties may be responsible for the enhanced Cu mobility, and therefore, faster Cu adsorption kinetics.

13.
Environ Sci Technol ; 51(19): 11105-11114, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28850224

RESUMO

Adsorption and redox transformations on clay mineral surfaces are prevalent in surface environments. We examined the redox reactivity of iron Fe(II)/Fe(III) associated with natural and synthetic ferric nontronites. Specifically, we assessed how Fe(II) residing in the octahedral sheets, or Fe(II) adsorbed at the edge sites alters redox activity of nontronites. To probe the redox activity we used arsenic (As) and selenium (Se). Activation of both synthetic and natural ferric nontronites was observed following the introduction of Fe(II) into predominantly-Fe(III) octahedral sheets or through the adsorption of Fe(II) onto the mineral surface. The oxidation of As(III) to As(V) was observed via catalytic (oxic conditions) and, to a lesser degree, via direct (anoxic conditions) pathways. We provide experimental evidence for electron transfer from As(III) to Fe(III) at the natural and synthetic nontronite surfaces, and illustrate that only a fraction of structural Fe(III) is accessible for redox transformations. We show that As adsorbed onto natural and synthetic nontronites forms identical adsorption complexes, namely inner-sphere binuclear bidentate. We show that the formation of an inner-sphere adsorption complex may be a necessary step for the redox transformation via catalytic or direct oxidation pathways.


Assuntos
Arsênio , Selênio , Adsorção , Compostos Férricos , Compostos Ferrosos , Oxirredução
14.
Environ Sci Technol ; 46(2): 843-51, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22136137

RESUMO

We have studied the immobilization of Sb(III) and Sb(V) by Al-rich phases - hydrous Al oxide (HAO), kaolinite (KGa-1b), and oxidized and reduced nontronite (NAu-1) - using batch experiments to determine the uptake capacity and the kinetics of adsorption and Extended X-ray Absorption Fine Structure (EXAFS) Spectroscopy to characterize the molecular environment of adsorbed Sb. Both Sb(III) and Sb(V) are adsorbed in an inner-sphere mode on the surfaces of the studied substrates. The observed adsorption geometry is mostly bidentate corner-sharing, with some monodentate complexes. The kinetics of adsorption is relatively slow (on the order of days), and equilibrium adsorption isotherms are best fit using the Freundlich model. The oxidation state of the structural Fe within nontronite affects the adsorption capacity: if the clay is reduced, the adsorption capacity of Sb(III) is slightly decreased, while Sb(V) uptake is increased significantly. This may be a result of the presence of dissolved Fe(II) in the reduced nontronite suspensions or associated with the structural rearrangements in nontronite due to reduction. These research findings indicate that Sb can be effectively immobilized by Al-rich phases. The increase in Sb(V) uptake in response to reducing structural Fe in clay can be important in natural settings since Fe-rich clays commonly go through oxidation-reduction cycles in response to changing redox conditions.


Assuntos
Silicatos de Alumínio/química , Alumínio/química , Antimônio/química , Caulim/química , Adsorção , Ferro/química , Oxirredução , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...